Interactions stratégiques dans la zone euro I

- Dans une union monétaire comme la zone euro, il y a une interaction stratégique entre la banque centrale et les décisions décentralisées de la politique budgétaire au niveau des pays membres
- Il peut y avoir alors une incitation individuelle à augmenter les déficits même si cela induit une (légère) hausse du taux d'inflation, qui sera partagé parmi les autres pays de la zone euro (problème du « freeriding »).
- Notamment en suivant un régime budgétaire Non-Ricardien, un gouvernement d'un pays membre peut induire une augmentation du niveau général des prix dans l'ensemble de l'union monétaire.
- Pour éviter un tel comportement, le Pacte de Stabilité et Croissance a été introduit pour limiter les capacités des gouvernements individuels à financer leurs dépenses par un déficit budgétaire
- Illustration du phénomène à partir d'une version modifié du modèle Nouveau Keynésien.

Interactions stratégiques dans la zone euro II

- Résumé du modèle Nouveau Keynésien:
 - Courbe IS:

$$x_{t} = -\varphi(i_{t} - E_{t}\pi_{t+1}) + E_{t}x_{t+1} + g_{t}$$

avec g_t le déficit publique de la zone euro à l'instant t (pas d'analyse de la contrainte budgétaire publique et de la dynamique de la dette!)

Courbe AS avec anticipations (nouvelle courbe de Phillips):

$$\pi_t = \lambda x_t + \beta E_t \pi_{t+1} + u_t$$

Interactions stratégiques dans la zone euro III

Fonction d'objectif de la Banque Centrale:

$$\min_{i_{t+i}} \frac{1}{2} E_t \left[\sum_{i=0}^{\infty} \delta^i \left(\alpha x_{t+i}^2 + \pi_{t+i}^2 \right) \right]$$

- Malgré la simplicité de ce cadre de modèle,
 l'introduction des interactions entre pays rend la solution complexe.
- On ressort alors à une analyse statique sans termes anticipatifs.

Interactions stratégiques dans la zone euro IV

- Modèle statique:
 - Courbe IS pour le pays j:

$$x_j = -\varphi(\bar{i} - \pi_j^e) + g_j$$

Courbe AS pour le pays j:

$$\pi_j = \lambda x_j + u_j$$

Courbe d'objectif pour la banque centrale:

$$L^{BC} = \frac{1}{2} \left(\alpha \overline{x}^2 + \overline{\pi}^2 \right)$$

- La banque centrale utilise des variables pondérée avec poids 1-ψ_i pour le pays j.
- Courbe d'objectif pour le gouvernement j:

$$L^{g_j} = \frac{1}{2} \left(x_j^2 + \theta (g_j + \varepsilon_j)^2 \right)$$

• Avec ε_i un choc budgétaire pour le pays *j*

Interactions stratégiques dans la zone euro V

Politique monétaire optimale:

$$\frac{\partial L}{\partial \bar{i}} = \alpha \varphi \left(\varphi \left(\bar{i} - \overline{\pi}^{e} \right) + \overline{g} \right) - \lambda \varphi \left(\lambda \left(-\varphi \left(\bar{i} - \overline{\pi}^{e} \right) + \overline{g} \right) + \overline{u} \right) = 0$$

$$\Leftrightarrow \alpha \varphi^{2} \left(\bar{i} - \overline{\pi}^{e} \right) - \alpha \varphi \overline{g} + \lambda^{2} \varphi^{2} \left(\bar{i} - \overline{\pi}^{e} \right) - \lambda^{2} \varphi \overline{g} - \lambda \varphi \overline{u} = 0$$

$$\Leftrightarrow \left(\alpha \varphi^{2} + \lambda^{2} \varphi^{2} \right) \left(\bar{i} - \overline{\pi}^{e} \right) = \left(\alpha \varphi + \lambda^{2} \varphi \right) \overline{g} + \lambda \varphi \overline{u}$$

$$\Rightarrow \bar{l} = \overline{\pi}^e + \frac{\alpha \varphi + \lambda^2 \varphi}{\alpha \varphi^2 + \lambda^2 \varphi^2} \overline{g} + \frac{\lambda \varphi}{\alpha \varphi^2 + \lambda^2 \varphi^2} \overline{u}$$

$$= \overline{\pi}^e + \frac{\overline{g}}{\varphi} + \frac{\lambda}{(\alpha + \lambda^2) \varphi} \overline{u} = \overline{\pi}^e + \frac{\overline{g}}{\varphi} + \frac{\lambda q}{\varphi} \overline{u} \quad \text{avec} \quad q = \frac{1}{\alpha + \lambda^2}$$

Interactions stratégiques dans la zone euro VI

 En suivant cette règle de taux d'intérêt, l'output gap et l'inflation de la zone euro s'élèvent à:

$$\overline{x} = -\varphi(\overline{i} - \overline{\pi}^e) + \overline{g} = -\varphi(\frac{\overline{g}}{\varphi} + \frac{\lambda q}{\varphi}\overline{u}) + \overline{g} = -\overline{g} - \lambda q\overline{u} + \overline{g} = -\lambda q\overline{u}$$

$$\overline{\pi} = \lambda \overline{x} + \overline{u} = -\lambda^2 q\overline{u} + \overline{u} = \frac{-\lambda^2 + \lambda^2 + \alpha}{\lambda^2 + \alpha}\overline{u} = \frac{\alpha}{\lambda^2 + \alpha}\overline{u} = \alpha q\overline{u}$$

- Donc:
 - Les déficits publiques n'ont pas d'impact ni sur l'inflation
 Européenne, ni sur le niveau de production Européen

Interactions stratégiques dans la zone euro VII

 En supposant des anticipations rationnelles, le taux d'inflation anticipé s'élève à:

$$\overline{\pi}^e = E[\alpha q \overline{u}] = 0$$

Et la politique monétaire suivra la règle de Taylor suivante:

$$\bar{i} = \frac{\overline{g}}{\varphi} + \frac{\lambda q}{\varphi} \overline{u} = \frac{\lambda q}{\varphi} \overline{u} + \frac{1 - \psi_j}{\varphi} g_j + \frac{\psi_j}{\varphi} \hat{g}_j$$

- Avec un chapeau indiquant la moyenne d'une variable sur tous les pays à part le pays j.
- La règle montre alors que si un pays j augmente ses déficits publiques, la banque centrale augmente ses taux pour contrer l'impact inflationniste.

Interactions stratégiques dans la zone euro VIII

 La politique monétaire implique pour l'output gap du pays j:

$$x_{j} = -\varphi(\bar{i} - \overline{\pi}^{e}) + g_{j}$$

$$= -\varphi\left(\frac{\lambda q}{\varphi}\overline{u} + \frac{1 - \psi_{j}}{\varphi}g_{j} + \frac{\psi_{j}}{\varphi}\hat{g}_{j}\right) + g_{j}$$

$$= -\lambda q\overline{u} + \psi_{j}(g_{j} - \hat{g}_{j})$$

- Notons que le pays j peut réduire les coûts d'un choc d'offre avec une politique budgétaire active.
- La fonction d'objectif du pays j s'écrit alors:

$$L^{g_j} = \frac{1}{2} \left[x_j^2 + \theta (g_j - \varepsilon_j)^2 \right]$$
$$= \frac{1}{2} \left[\left(-\lambda q \overline{u} + \psi_j (g_j - \hat{g}_j) \right)^2 + \theta (g_j - \varepsilon_j)^2 \right]$$

OECD **((229** OCDE

Interactions stratégiques dans la zone euro IX

 La politique budgétaire optimale du pays j se détermine alors comme suit:

$$\frac{\partial L^{g_j}}{\partial g_j} = \left(-\lambda q \overline{u} + \psi_j \left(g_j - \hat{g}_j\right)\right) \psi_j + \theta \left(g_j - \varepsilon_j\right) = 0$$

$$\Leftrightarrow -\lambda q \psi_j \overline{u} + \psi_j^2 \left(g_j - \hat{g}_j\right) + \theta g_j - \theta \varepsilon_j = 0$$

$$\Leftrightarrow \left(\psi_j^2 + \theta\right) g_j = \psi_j^2 \hat{g}_j + \lambda q \psi_j \overline{u} + \theta \varepsilon_j$$

$$\Leftrightarrow g_j = \frac{\psi_j^2}{\psi_j^2 + \theta} \hat{g}_j + \frac{\psi_j}{\psi_j^2 + \theta} \lambda q \overline{u} + \frac{\theta}{\psi_j^2 + \theta} \varepsilon_j$$

 Le gouvernement réagit uniquement au choc d'offre si il y plus qu'un pays dans l'union monétaire, i.e. ψ_i>0

Interactions stratégiques dans la zone euro X

Pour le reste de la présentation, on suppose:

$$1-\psi_j = \frac{1}{n}; \quad \psi_j = \frac{n-1}{n}; \quad \psi_j^2 = \frac{(n-1)^2}{n^2}$$

Ce qui implique:

$$\hat{g}_j = \frac{n}{n-1}\overline{g} - \frac{1}{n-1}g_j = \frac{n\overline{g} - g_j}{n-1}; \frac{1}{n}\sum_{j=1}^n \hat{g}_j = \overline{g}$$

Interactions stratégiques dans la zone euro XI

La politique budgétaire du pays j suit donc:

$$g_{j} = \frac{\frac{(n-1)^{2}}{n^{2}}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \hat{g}_{j} + \frac{\frac{n-1}{n}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \lambda q \overline{u} + \frac{\theta}{\frac{(n-1)^{2}}{n^{2}} + \theta} \varepsilon_{j}$$

La moyenne à travers les pays de l'union monétaire:

$$\overline{g} = \frac{1}{n} \sum_{j=1}^{n} g_{j} = \frac{\frac{(n-1)^{2}}{n^{2}}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \overline{g} + \frac{\frac{n-1}{n}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \lambda q \overline{u} + \frac{\theta}{\frac{(n-1)^{2}}{n^{2}} + \theta} \overline{\varepsilon}$$

$$\Leftrightarrow \frac{\frac{(n-1)^{2}}{n^{2}} + \theta - \frac{(n-1)^{2}}{n^{2}}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \overline{g} = \frac{\frac{n-1}{n}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \lambda q \overline{u} + \frac{\theta}{\frac{(n-1)^{2}}{n^{2}} + \theta} \overline{\varepsilon}$$
Ekkehard Ernst
$$\Rightarrow \overline{g} = \frac{n-1}{n\theta} \lambda q \overline{u} + \overline{\varepsilon}$$
OECD (232 OCDE

Interactions stratégiques dans la zone euro XII

 Ceci a les conséquences suivantes pour la politique monétaire:

$$\bar{i} = \frac{1}{\varphi} \bar{g} + \frac{\lambda q}{\varphi} \bar{u}$$

$$= \frac{\frac{n-1}{n\theta} \lambda q \bar{u} + \bar{\varepsilon}}{\varphi} + \frac{\lambda q}{\varphi} \bar{u}$$

$$= \left(1 + \frac{n-1}{n\theta}\right) \frac{\lambda q}{\varphi} \bar{u} + \frac{1}{\varphi} \bar{\varepsilon}$$

Interactions stratégiques dans la zone euro XIII

Quelle est la politique fiscale dans un pays individuel? – (1)

$$g_{j} = \frac{\frac{(n-1)^{2}}{n^{2}}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \hat{g}_{j} + \frac{\frac{n-1}{n}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \lambda q \overline{u} + \frac{\theta}{\frac{(n-1)^{2}}{n^{2}} + \theta} \varepsilon_{j}$$

$$= \frac{\frac{(n-1)^{2}}{n^{2}}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \cdot \frac{n\overline{g} - g_{j}}{n-1} + \frac{\frac{n-1}{n}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \lambda q \overline{u} + \frac{\theta}{\frac{(n-1)^{2}}{n^{2}} + \theta} \varepsilon_{j}$$

$$= \frac{\frac{n-1}{n^{2}}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \cdot (n\overline{g} - g_{j}) + \frac{\frac{n-1}{n}}{\frac{(n-1)^{2}}{n^{2}} + \theta} \lambda q \overline{u} + \frac{\theta}{\frac{(n-1)^{2}}{n^{2}} + \theta} \varepsilon_{j}$$

Interactions stratégiques dans la zone euro XIV

Quelle est la politique fiscale dans un pays individuel? – (2)

$$\frac{\left(\frac{n-1}{n^2} + \theta + \frac{n-1}{n^2}\right)}{\frac{(n-1)^2}{n^2} + \theta} g_j = \frac{\frac{n-1}{n}}{\frac{(n-1)^2}{n^2} + \theta} \cdot \overline{g} + \frac{\frac{n-1}{n}}{\frac{(n-1)^2}{n^2} + \theta} \lambda q \overline{u} + \frac{\theta}{\frac{(n-1)^2}{n^2} + \theta} \varepsilon_j$$

$$\left(\frac{(n-1)^2}{n^2} + \theta + \frac{n-1}{n^2}\right) g_j = \frac{n-1}{n} \cdot \overline{g} + \frac{n-1}{n} \cdot \lambda q \overline{u} + \theta \varepsilon_j$$

$$\frac{n\theta + n - 1}{n} g_j = \frac{n-1}{n} \cdot \overline{g} + \frac{n-1}{n} \cdot \lambda q \overline{u} + \theta \varepsilon_j$$

$$g_j = \frac{n-1}{n\theta + n - 1} \cdot \overline{g} + \frac{n-1}{n\theta + n - 1} \cdot \lambda q \overline{u} + \frac{n\theta}{n\theta + n - 1} \varepsilon_j$$

Interactions stratégiques dans la zone euro XV

Quelle est la politique fiscale dans un pays individuel? – (3)

$$g_{j} = \frac{n-1}{n\theta + n - 1} \cdot \left(\frac{n-1}{n\theta} \lambda q \overline{u} + \overline{\varepsilon}\right) + \frac{n-1}{n\theta + n - 1} \cdot \lambda q \overline{u} + \frac{n\theta}{n\theta + n - 1} \varepsilon_{j}$$

$$= \frac{n\theta}{n\theta + n - 1} \varepsilon_{j} + \frac{n-1}{n\theta + n - 1} \overline{\varepsilon} + \frac{(n-1)^{2} + n\theta(n-1)}{(n\theta + n - 1)n\theta} \lambda q \overline{u}$$

$$= \frac{n\theta}{n\theta + n - 1} \varepsilon_{j} + \frac{n-1}{n\theta + n - 1} \overline{\varepsilon} + \frac{(n-1)(n\theta + n - 1)}{(n\theta + n - 1)n\theta} \lambda q \overline{u}$$

$$= \frac{n\theta}{n\theta + n - 1} \varepsilon_{j} + \frac{n-1}{n\theta + n - 1} \overline{\varepsilon} + \frac{n-1}{n\theta} \lambda q \overline{u}$$

$$= \frac{n\theta}{n\theta + n - 1} \varepsilon_{j} + \frac{n-1}{n\theta + n - 1} \left(\frac{\varepsilon_{j}}{n} + \frac{n-1}{n\theta} \hat{\varepsilon}_{j}\right) + \frac{n-1}{n\theta} \lambda q \overline{u}$$

$$= \frac{n^{2}\theta + n - 1}{n(n\theta + n - 1)} \varepsilon_{j} + \frac{(n-1)^{2}}{n(n\theta + n - 1)} \hat{\varepsilon}_{j} + \frac{n-1}{n\theta} \lambda q \overline{u}$$

OECD ((236 OCDE

Interactions stratégiques dans la zone euro XVI

Notons que

$$\varphi \bar{i} = \bar{\varepsilon} + \left(1 + \frac{n-1}{n\varphi}\right) \bar{u}$$

$$\frac{n-1}{n\theta + n-1} \varphi \bar{i} = \frac{n-1}{n\theta + n-1} \bar{\varepsilon} + \left(\frac{n-1}{n\theta + n-1} \cdot \frac{n\theta + n-1}{n\theta}\right) \lambda q \bar{u}$$

$$= \frac{n-1}{n\theta + n-1} \bar{\varepsilon} + \frac{n-1}{n\theta} \lambda q \bar{u}$$

Donc:

$$g_{j} = \frac{n\theta}{n\theta + n - 1} \varepsilon_{j} + \frac{n - 1}{n\theta + n - 1} \overline{\varepsilon} + \frac{n - 1}{n\theta} \lambda q \overline{u}$$
$$= \frac{n\theta}{n\theta + n - 1} \varepsilon_{j} + \frac{n - 1}{n\theta + n - 1} \varphi \overline{i}$$

- Intuition:
 - Suite à un choc de coût, les pays anticipent une augmentation du taux d'intérêt, ce qui les incite à creuser leurs déficit afin d'atténuer son effet
 - Cette augmentation des déficits est la cause de la hausse du taux par la banque centrale

Interactions stratégiques dans la zone euro XVII

Quel est l'impact de la règle fiscale sur l'output gap du pays j?

$$\begin{aligned} x_{j} &= -\varphi(\bar{i} - \overline{\pi}^{e}) + g_{j} \\ &= -\varphi\bar{i} + \frac{n-1}{n\theta + n - 1}\varphi\bar{i} + \frac{n\theta}{n\theta + n - 1}\varepsilon_{j} \\ &= \frac{n\theta}{n\theta + n - 1} \left(-\varphi\bar{i} + \varepsilon_{j} \right) \\ &= \frac{n\theta}{n\theta + n - 1} \left(-\bar{\varepsilon} - \left(1 + \frac{n-1}{n\theta} \right) \lambda q\bar{u} + \varepsilon_{j} \right) \\ &= \frac{n\theta}{n\theta + n - 1} \left(-\frac{1}{n}\varepsilon_{j} - \frac{n-1}{n}\hat{\varepsilon}_{j} - \frac{n\theta + n - 1}{n\theta} \lambda q\bar{u} + \varepsilon_{j} \right) \\ &= \frac{n\theta}{n\theta + n - 1} \left(-\frac{n\theta + n - 1}{n\theta} \lambda q\bar{u} + \frac{n - 1}{n} (\varepsilon_{j} - \hat{\varepsilon}_{j}) \right) \\ &= -\lambda q\bar{u} + \frac{\theta(n - 1)}{n\theta + n - 1} (\varepsilon_{j} - \hat{\varepsilon}_{j}) \end{aligned}$$

Interactions stratégiques dans la zone euro XVIII

- Résumé du modèle de court terme:
 - Au niveau Européen
 - Taux d'intérêt nominal

$$\bar{i} = \left(1 + \frac{n-1}{n\theta}\right) \frac{\lambda q}{\varphi} \overline{u} + \frac{1}{\varphi} \overline{\varepsilon} = \frac{1}{\varphi} \overline{g} + \frac{\lambda q}{\varphi} \overline{u}$$

Taux d'inflation, output gap

$$\overline{\pi} = \alpha q \overline{u}$$
; $\overline{x} = -\lambda q \overline{u}$

- Au niveau national
 - Déficit publique

$$g_{j} = \frac{n^{2}\theta + n - 1}{n(n\theta + n - 1)} \varepsilon_{j} + \frac{(n - 1)^{2}}{n(n\theta + n - 1)} \hat{\varepsilon}_{j} + \frac{n - 1}{n\theta} \lambda q \overline{u}$$

Output gap

$$x_{j} = -\lambda q \overline{u} + \frac{\theta(n-1)}{n\theta + n - 1} (\varepsilon_{j} - \hat{\varepsilon}_{j})$$

Interactions stratégiques dans la zone euro XIX

- Conclusions du modèle de court terme:
 - Une augmentation des déficits publics augmente le taux d'intérêt nominal mais n'a pas d'impact sur le taux d'inflation Européen
 - Dans un modèle à un seul pays, la politique budgétaire ne réagit qu'à un choc fiscal, le taux d'inflation et l'output gap ne sont pas affecté par la politique budgétaire
 - Dans un modèle à plusieurs pays, la politique budgétaire dans un pays j réagit également aux chocs fiscaux dans d'autres pays ainsi qu'au choc d'offre au niveau Européen.
 - En absence des chocs asymétriques sur le déficit, ε_t, la coordination des politiques budgétaire serait optimale.

Interactions stratégiques dans la zone euro XX

Le long terme:

- A long terme, le niveau de la dette publique et la soutenabilité budgétaire auront un impact sur le fonctionnement du système financier et la stabilité de la zone euro.
- Dans une union monétaire la dévaluation n'est plus possible pour répondre à une telle crise, la banque centrale sera alors obligé d'intervenir (avec des conséquences sur le taux d'inflation)
- En plus, l'internationalisation des banques Européennes introduit un mécanisme de contagion d'une crise financière à travers la zone euro
 - Solution: Centraliser la supervision bancaire

Interactions stratégiques dans la zone euro XXI

- Le Pacte de Stabilité et Croissance
 - Un premier pas vers une coordination des politiques budgétaire en Europe.
 - Une sauvegarde de la soutenabilité budgétaire contre les incitations individuelles d'augmenter les déficits publics
 - Un élargissement de la zone euro augmente ce problème d'interaction stratégique et renforce donc la nécessité d'avoir un pacte stricte.
 - Repose sur l'hypothèse d'un poids faible des chocs asymétriques et de l'importance du risque de crise financière
 - L'importance des chocs asymétriques est endogène et évolue avec l'intégration de la zone euro (spécialisation sectorielle, partage de risque international).

